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Evaluation of Loss Factor of Multilayered
Inhomogeneous Waveguides for
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Efficient Finite Element
Formalism
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Abstract — An efficient finite element solution procedure is developed
for calculating propagation losses of magnetostatic waves in multilayered
inhomogeneous waveguides. The final matrix equation is reduced to a
standard complex eigenvalue problem whose eigenvalue corresponds to the
complex phase constant itself. Thus, iteration procedures are not necessary
and the phase and attenuation constants can be directly obtained by solving
a standard eigenvalue equation. The validity of the method is confirmed by
calculating propagation losses of magnetostatic surface waves in a single
YIG-film structure. Numerical results for a triple-layered YIG-film struc-
ture are also presented. It is found that in the triple-layered structure,
propagation losses are highly dependent on the line width of the film in
which the magnetostatic potential is well confined.

1. INTRODUCTION

AGNETOSTATIC wave (MSW) propagation losses

for a homogeneous single YIG-film structure have
been extensively investigated [1]-[7]. It is known that at
high frequencies, a magnetostatic surface wave (MSSW)
propagation loss factor L (dB/us) for a single YIG-film
structure is proportional to the frequency with a slope of
47(76.4\ /y*u3M,) and can be written as L =76.4AH
[2]-[5] Here A is the damping parameter, M, is the
magnetization, y is the gyromagnetic ratio, and AH is the
ferromagnetic resonance line width. It has also been found
that magnetostatic forward volume wave (MSFVW) prop-
agation loss characteristics for a single YIG-film structure
are similar to MSSW modes and that the dependence of
loss factor on line width is also 76.4A H [6]. Stancil [7] has
investigated propagation losses of MSSW, MSFVW, and
magnetostatic backward volume waves (MSBVW) in de-
tail.

Recently, much attention has been paid to MSW modes
in various complicated structures such as multilayered and
inhomogeneous films to improve the delay characteristics
[6], [8]-[10], and numerical approaches such as the varia-
tional method [9] and the finite element method [10] have
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been introduced for analyzing nonuniform geometries.
These methods are valid for the solution of multilayered
inhomogeneous waveguiding structures. However, the final
matrix equation should be solved by searching for the
phase constant such that the determinant of the matrix
vanishes. Since the phase constant for lossy waveguides
becomes complex. it is very difficult to solve the above
matrix equation so as to have the determinant of the
complex matrix vanish by searching for two values, i.e., the
phase constant and the attenuation constant.

In this paper, an efficient finite element solution proce-
dure is developed for calculating MSW propagation losses
for multilayered inhomogeneous waveguides. The final ma-
trix equation is reduced to a standard complex eigenvalue
problem whose eigenvalue corresponds to the complex
phase constant itself. Thus, iteration procedures are not
necessary and the phase and attenuation constants can be
directly obtained by solving a standard eigenvalue equa-
tion.

The validity of the method is confirmed by calculating
MSSW propagation losses for a single YIG-film structure.
Also, MSBVW propagation losses for a single YIG-film
structure are calculated. It is shown that the MSBVW
propagation loss characteristic is similar to that for
MSFVW modes. Furthermore, MSFVW propagation losses
for a triple-layered YIG-film structure are investigated. It
is found that in the triple-layered structure, propagation
losses depend greatly on the line width of the film in which
the magnetostatic potential is well confined.

II. Basic EQUATIONS

We consider the multilayered inhomogeneous waveguide
for MSW modes shown in Fig. 1. When the bias field H,
1s applied in parallel with the x, y, and z directions,
MSFVW, MSBVW, and MSSW modes propagate along
the y direction, respectively.

With a time dependence of the form exp(jw?) being
implied, the relative permeability tensor [u,] takes the
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Fig. 1. Geometry of a planar MSW waveguide.
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Here H, is the internal magnetic field in the ferrimag-
netic film; H,= H,— M, for MSFVW and H,= H, for
MSBVW and MSSW. At a given frequency, the damping
parameter A is related to the line width AH through the
expression [3]

YR M,

2w

and AH can be measured from a ferrimagnetic resonance
(FMR) absorption.

Assuming that there is no variation of all fields in the z
direction, from Maxwell’s equations and the magnetostatic
approximation condition the following basic equations for
MSW waveguides are obtained:

dB,./dx — jskB,=0 (7)
=—0J¢/dx (8)
H, = jsk¢ (%)

}\:

AH (6)
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where k is the complex phase constant in the y direction,
Re(k) =B and Im(k) = — a are the phase and attenua-
tion constants, respectively, s = +1 is a directional param-
eter [8], [9], and ¢ is the magnetostatic potential. The time
delay T is given by
d
T= ;1-@— (s/m).
The loss factor L in dB/us is defined as

=[8.686a/T]x10°¢  (dB/us).

(10)

(11)

1II. MATHEMATICAL FORMULATIONS

We consider the following four cases in Fig. 1:

1) ¢ and & are finite;
2) h is finite and ¢ — o0,
3) ¢ is finite and & — o0;
4) t > o0 and h— 0.

Dividing the region —¢t<x<D+h,0<x<D+h, —t <
x< D, or 0 <x <D into a number of second-order line
elements [11] for case 1), 2), 3), or 4), respectively, using
the finite element method based on a Galerkin procedure
on (7), integrating by parts, and assembling the complete
matrix for the region by adding the contributions of all
different elements [10], we obtain

k2[4]{o}+k[BI{6) +[Cl{s}+Kk{$} = (0} (12)

where

fozpe{N}{N}de for MSSW and
[4] = xl ‘ MSFVW
foz{N}{N}de for MSBVW
(13)
[0] for MSFVW and MSBVW
[BJ—{sZ/’”n (NHN)T+ (V) (N)7) d
for MSSW
(14)
Efxzue{zvx}{Nx}de for MSBVW and
(c]= . MSSW
Y [FNI{N)Tde  for MSEVW
(15)
0o - 00 for 1)
[¢o O 0o 0]" for 2) iy
fo o 0 ¢,]" for 3) (16)
[¢p O 0 oép] for 4).
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TABLE 1
ExacT AND FINITE ELEMENT SOLUTIONS FOR MSSW MODES IN
A SINGLE YIG-FILM STRUCTURE

4R k= f8-3a ca™?
£ ey | (B emnes | @vmees X107 B rew
\ 1 12.1318 0 699061 12 1316
2.1 -1 | 26.599% 1 51969 26 58985
1 12 1316 2 08716 12.1316
4
4

aexn X 107
. 699053
-51969
097186

-1} 26 5995 55908 26.5995 55908
1 | 206.266 .28498 206 287 285086
-1]231.271 3.25830 231 271 3 25831
1 206 266 12.8549 206 267 12,8552
-1] 231.271 9 77491 231.271 8.77494
1 | 890.659 14,1368 893.671 14.4214
30 i -1} 890.669 14,1351 880 763 14,1417
1 ] 890.659 42 4102 883 671 43.2642
-1} 890.699 42.4062 890.763 42 4251

N} IF QXY =Y

Here T, {-}, and {-}7 denote a transpose, a column vector,
and a row vector, respectively. The components of the {¢}
vector are the values of ¢ at the nodal points in the region
divided into elements; ¢, and ¢, are the values of ¢ at the
nodal points on x =0 and x = D, respectively; { N} is the
shape function vector, {N,} =d{N}/dx; {0} is a null
vector; [0] is a null matrix; x;, and x, are the x coordi-
nates of the two ends of the line element (x, < x,); and ¥,
extends over all different elements.

In order to obtain directly the complex phase constant
k, (12) is reduced to a standard complex eigenvalue equa-

tion [11]:
[0] [U] H {¢}}=k[{¢}}
—[4)7[B] || k{9) k{o)
(17)

~{4]7'[C]

where [U] is a unit matrix and [ B] is given by

[8]=[B]+[D]. (18)

Here
Dy 0 - 0 0
0 0 --- 0 0
pl=|: oo (19)
0 o --- 0 0
O 0 --- 0 D,
D,=0 D,,=0 forl) (20a)
D, =1 D, =0 for2) (20b)
D=0 D, =1  for3) (20¢)
D, =1 D, =1  ford) (20d)

where n corresponds to the number of nodal points. The
final matrix equation (17) is a standard eigenvalue prob-
lem whose eigenvalue corresponds to the complex phase
constant k itself. Thus, iteration procedures are not neces-
sary and the phase and attenuation constants can be
directly obtained by solving the standard eigenvalue equa-
tion (17).
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Fig. 2. Attenuation constant as a function of propagation constant for
MSSW modes in a single YIG-film structure.
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Fig. 3 Frequency dependence of loss factor for MSSW modes in a

single YIG-film structure.

1V. CoMprUTED RESULTS

As a test for the numerical accuracy of the method
proposed here, we first consider a single YIG-film struc-
ture [3]. Table I shows the results for MSSW modes where
H, =255 Oe, M,=1750 G, d =10 pm, h=75 pm, and
t > 00; Boa and o, are the exact solutions [3]; and
Bren and agp,, are the finite element solutions. The
number of elements is 9. The damping parameter A is
calculated from an FMR line width of 0.1 and 0.3 Oe at
f=9.3 GHz and it is assumed that A is independent of
frequency [3], [5], [6]. Our results agree well with the exact
solutions [3] for both phase and attenuation. Fig. 2 shows
a plot of «a as a function of 8. The frequency dependence
of the loss factor L is given in Fig. 3. The results in Figs. 2
and 3 are also in agreement with those in |3, figs. 3 and 5],
respectively.
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Fig. 4. Frequency dependence of loss factor for MSBVW modes in a
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Fig. 5. MSFVW modes in a triple-layered YIG-film structure. (a) Fre-
quency dependence of loss factor. (Continued in next column)

Next, we consider MSBVW propagation losses for a
single YIG-film structure, Fig. 4 shows a plot of the loss
factor L as a function of frequency from 5 to 30 GHz,
where M, =1200 G, d =30 pm, A =635 pm,  — o0, and
AH=10.1 and 0.3 Oe at f =9 GHz. It is shown by Fig. 4
that propagation losses increase rapidly with frequency
and that the dependence of the loss factor L on AH is also
76 4AH. This is similar to that for MSFVW modes [6].

Lastly, we consider MSFVW propagation losses for a
triple-layered YIG-film structure which have not been
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fully investigated [6], [8]. The frequency’dependence of L,
the group delay T, and potential profiles are shown in Fig.
5(a), (b), and (c). respectively, where H, = 2500 Oe, M, =
1750 G, M, =1500 G, M, =1680 G, d, =90 um, d,=10
pm, dy=7pm, h=127pm, t > o0, and AH,, AH,, AH,,
are given by

AH,=AH,=AH,=0.3Oe

f(:)r @ (21a)

AH,=0.10e AH,=AH,=030e for (2) (21b)
AH,=0.10e AH,=AH,=030e for Q) (21c)
AH,=0.10e AH,=AH,=030e for (@.

(214d)

For comparison with the lossless case AH,=AH,=
AH,=0 [8], the results above 2.8 GHz are presented in
Fig. 5. The delay curve and potential profiles are almost
the same for all the cases 1. 2, 3, and 4. Also, the delay
curve in Fig. 5(b) is like that in [8, fig. 3]. When three films
have the same line width (case 1), the frequency depen-
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Fig. 6. Frequency dependence of loss factor for MSFVW modes in a
triple-layered YIG-film structure. (2) 8 =200 cm ™. (b) 8 =90 cm ™1,

dence of L is similar to that for a single YIG-film struc-
ture. With increasing frequency, the potential is well con-
fined in the first film. Thus, the loss factor L for case 4
with smaller A H, decreases with frequency. In cases 2 and
3 with larger AH,, on the other hand, the loss factor L
increases with frequency. Since the magnitude of the po-
tential is relatively small in the third film, the influence of
the value of AH; on L is very small and the difference
between the loss factors of cases 1 and 2 is small. It is
found from Fig. 5(a) and (b) that case 3 provides the
smallest propagation loss in nondispersive bandwidth. The
frequency dependence of the loss factor for 8 =200 and 90
cm™ ! is shown in Fig. 6(a) and (b), respectively. In order
to preserve the constant value of 8, the bias field H, is
altered. When S is approximately constant, potential pro-
files are almost the same even though frequency varies. In
the case of B =200 cm ™!, the potential is well confined in
the first film. In the case of 8 =90 cm !, on the other
hand, the potential peak moves toward the interface be-
tween the first and second films. It is found from Figs. 5
and 6 that propagation losses depend greatly on the line
width of the film in which the potential is well confined.

V. CONCLUSIONS

An efficient finite element solution procedure was devel-
oped for the analysis of MSW propagation losses for
multilayered inhomogeneous waveguides. The final matrix
equation is reduced to a standard complex eigenvalue
problem whose eigenvalue corresponds to the complex
phase constant itself. Thus, the phase and attenuation
constants can be directly obtained by solving a standard
eigenvalue equation.

The validity of the method is confirmed by calculating
MSSW propagation losses for a single YIG-film structure.
Also, MSBVW propagation losses for a single YIG-film
structure are calculated. It is shown that the MSBVW
propagation loss characteristic is similar to that for
MSFVW modes. Furthermore, MSFVW propagation losses
for three-layered YIG-film structure are also investigated.
It is found that in the triple-layered structure, propagation
losses depend greatly on the line width of the film in which
the potential is well confined.
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