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Evaluation of Loss Factor of Multilayered
Inhomogeneous Waveguides for

Magnetostatic Waves Using
Efficient Finite Element

Formalism
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,4bstract—An efficient finite element solution procedure is developed

for calculating propagation lossesof magnetostaticwaves in multilayered

inhomogeneous wavegnides. The final matrix equation is reduced to a

standard complex eigenvahre problem whose eigenvalue corresponds to the

complex phase constant itself. Thus, iteration procedures are uot necessary

and the phase and attenuation constants can be directly obtained by solving

a standard eigenvahre equation. The vafidity of the method is confirmed by

calculating propagation losses of magnetostatic surface waves in a single

YIGfilm structure. Numerical results for a triple-layered YIGfilm struc-

ture are also presented. It is found that in the triple-layered structure,

propagation losses are higfdy dependent on the line width of the film in

which the magnetostatic potential is well confined.

I. INTRODUCTION

M AGNETOSTATIC wave (MSW) propagation losses

for a homogeneous single YIG-film structure have

been extensively investigated [1]–[7]. It is known that at

high frequencies, a magnetostatic surface wave (MSSW)

propagation loss factor L (dB/ps) for a single YIG-film

structure is proportional to the frequency with a slope of

4n-(76.4A/y2p~M,) and can be written as L = 76.4AH

[2]-[5]. Here A is the damping parameter, M. is the

magnetization, y is the gyromagnetic ratio, and AH is the

ferromagnetic resonance line width. It has also been found

that magnetostatic forward volume wave (MSFVW) prop-

agation loss characteristics for a single YIG-film structure

are similar to MSSW modes and that the dependence of

loss factor on line width is also 76.4 AH [6]. Stancil [7] has

investigated propagation losses of MSSW, MSFVW, and

magnetostatic backward volume waves (MSBVW) in de-

tail.
Recently, much attention has been paid to MSW modes

in various complicated structures such as multilayered and

inhomogeneous films to improve the delay characteristics

[6], [8]-[10], and numerical approaches such as the varia-

tional method [9] and the finite element method [10] have
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been introduced for analyzing nonuniform geometries.

These methods are valid for the solution of multilayered

inhomogeneous waveguiding structures. However, the final

matrix equation should be solved by searching for the

phase constant such that the determinant of the matrix

vanishes. Since the phase constant for lossy waveguides

becomes complex. it is very difficult to solve the above

matrix equation so as to have the determinant of the

complex matrix vanish by searching for two values, i.e., the

phase constant and the attenuation constant.

In this paper, an efficient finite element solution proce-

dure is developed for calculating MSW propagation losses

for multilayered inhomogeneous waveguides. The final ma-

trix equation is reduced to a standard complex eigenvalue

problem whose eigenvalue corresponds to the complex

phase constant itself. Thus, iteration procedures are not

necessary and the phase and attenuation constants can be

directly obtained by solving a standard eigenvalue equa-

tion.

The validity of the method is confirmed by calculating

MSSW propagation losses for a single YIG-film structure.

Also, MSBVW propagation losses for a single YIG-film

structure are calculated. It is shown that the MSBVW
propagation loss characteristic is similar to that for

MSFVW modes. Furthermore, MSFVW propagation losses

for a triple-layered YIG-film structure are investigated. It

is found that in the triple-layered structure, propagation

losses depend greatly on the line width of the film in which

the magnetostatic potential is well confined.

II. BASIC EQUATIONS

We consider the multilayered inhomogeneous waveguide

for MSW modes shown in Fig. 1. When the bias field Ho

is applied in parallel with the x, -v, and z directions,

MSFVW, MSBVW, and MSSW modes propagate along

the y direction, respectively.

With a time dependence of the form exp ( jo~) being

implied, the relative permeability y tensor [p,] takes the
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Fig. 1. Geomet~ofaplanarMSWwaveguide.
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Here H, is the internal magnetic field in the ferromag-

netic film; H, = Ho – M, for MSFVW and H, = Ho for

MSBVW and MSSW. At a given frequency, the damping

pari~meter A is related to the line width AH through the

expression [3]

Y2@-f,
A=— AH

2U
(6)

and AH can be measured from a ferromagnetic resonance

(FMR) absorption.

Assuming that there is no variation of all fields in the z

direction, from Maxwell’s equations and the magnetostatic

approximation condition the following basic equations for

MSW waveguides are obtained:

dBX/8x – jskBy = O (7)

HX = – d+lax (8)

Hy = jsk$ (9)
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where k is the complex phase constant in the y direction,

Re(k) = ~ and Im (k) - – a are the phase and attenua-

tion constants, respectively, s = f 1 is a directional param-

eter [8], [9], and r#Iis the magnetostatic potential. The time

delay T is given by

(lo)

The loss factor L in dB/ps is defined as

L = [8.686a/T] x 10-6 (dB/~s). (11)

III. MATHEMATICAL FORMULATIONS

We consider the following four cases in Fig. 1:

1) t and h are finite;

2) h is finite and ~ - co;

3) t is finite and h a co;

4) t~ooandh~ea.

Dividing theregion --t~x~D+h, O~x~D+h,-tg

xs D, or O < xs D into a number of second-order line— —
elements [11] for case 1), 2), 3), or 4), respectively, using

the finite element method based on a Galerkin procedure

on (7), integrating by parts, and assembling the complete

matrix for the region by adding the contributions of all

different elements [10], we obtain

k2[A]{@} +k[B]{@} +[C]{cj}+k{~}= {O} (12)

where

[

~j’’,{~}{~}’dx for MSSW and

[A]= e
MSFVW

~fx2{N}{iV}’dx for MSBVW
e -h

(13’)

1

[0] for MSFVW and MSBVW

[B]= s~fx2tce({NX}{N} ’+{iv}{Ivy}’)dx
e xl

\ for MSSW

[

z~:Pe{%}{Nx}’dx

[c] = e

~~’2{NX}{NX}’dx
e %

[

[0 o ““” o O]T

{i}= :~ O“ ““’ O“ :];T
. . .

[@o o ““” o @D]T
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for MSBVW and

MSSW

for MSFVW

for 1)
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for 4).
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TABLE I

EXACT AND FINITE ELEMENT SOLUTIONS FOR MSSW MODES IN

A SINGLE YIG-FILM STRUCTUM

All
f (cHz)

k = O-.Ja ..-,

(Oe) s /2 ., ... a. =... X1O* 6,=. a ,,” Xlo’

0.1 1 12.1316 0 699061 12 1316 0.699053

2,1 -1 26.5995 1 51969 26 5995 1.51969

0.3 ‘
12 1316 2 09716 12.1316 2 09716

-1 26 5995 4 55908 26.5995 4 55908

01 1 206.266 4.28496 206 267 4 28506

-1 231.271 3.25830 231 271 3 25831
25

0.3 ‘
206 266 12.8549 206 267 12,8552

-1 231.271 9 77491 231.271 9.17494

0.1 1 890.659 14.1368 893.671 14.4214

30 -1 890.669 14.1351 890 763 14.1411

0,3 ‘
890.659 42 4102 893 671 43.2642

-1 890.899 42,4052 890,763 $2 4251

Here T, {.}, and {. }~denote a transpose, a column vector,

and a row vector, respectively. The components of the {@}

vector are the values of @ at the nodal points in the region

divided into elements; 00 and +~ are the values of @ at the

nodal points on x = O and x = D, respectively; { N } is the

shape function vector, { NX } = d{ N }/dx; {O} is a null

vector; [0] is a null matrix; xl and Xa are the x coordi-

nates of the two ends of the line element (xl < X2); and Z,

extends over all different elements.

In order to obtain directly the complex phase constant

k, (12) is reduced to a standard complex eigenvalue equa-

tion [11]:

[

[0] [u]

-[ A]--’[c] -[ A]-’[~] 1{43}
H]

{$}
k{~} ‘k k{q)}

(17)

where [U] is a unit matrix and [~] is given by

Here

[D]=

[II] =[B]+[D].

Dll O . . . 0 0

00...00
. . . . .. .. .

[

00...00

0 0 --- 0 Dnn

Dll = O Dnn = O for 1)

D,L=l Da. = O for 2)

Dll = o Dnn = 1 for 3)

Dll=l D~E=l for 4)

(18)

(19)

(20a)

(20b)

(20C)

(20d)

where n corresponds to the number of nodal points. The

final matrix equation (17) is a standard eigenvalue prob-

lem whose eigenvalue corresponds to the complex phase

constant k itself. Thus, iteration procedures are not neces-

sary and the phase and attenuation constants can be

directly obtained by solving the standard eigenvalue equa-

tion (17).
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Fig. 2, Attenuation constant as a function of propagation constant for

MSSW modes in a single YIG-fdm structure.
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Fig. 3 Frequency dependence of loss factor for

‘single YIG-fdm structure.

MSSW modes in a

IV. COMPUTED RESULTS

As a test for the numerical accuracy of the method

proposed here, we first consider a single YIG-film struc-

ture [3]. Table I shows the results for MSSW modes where

Ho= 255 Oe, M, =1750 G, d =10 pm, h =75 pm, and

f 4 ~ ; flexact and a,XaCt are the exact solutions [3]; and

p~~~ and a~~~ are the finite element solutions. The
number of elements is 9. The damping parameter A is

calculated from an FMR line width of 0.1 and 0.3 Oe at

j = 9.3 GHz and it is assumed that A is independent of

frequency [3], [5], [6]. Our results agree well with the exact

solutions [3] for both phase and attenuation. Fig. 2 shows

a plot of a as a function of ~. The frequency dependence

of the loss factor L is given in Fig. 3. The results in Figs. 2

and 3 are also in agreement with those in [3, figs. 3 and 5],

respectively.
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Next, we consider MSBVW propagation losses for a

single YIG-film structure. Fig. 4 shows a plot of the loss

factor L as a function of frequency from 5 to 30 GHz,

where M, =1200 G, d = 30 pm, h = 635 pm, t+ m, and

AH== 0.1 and 0.3 Oe at j = 9 GHz. It is shown by Fig. 4

that propagation losses increase rapidly with frequency

and that the dependence of the loss factor L on AH is also

76.4 AH. This is similar to that for MSFVW modes [6].

Lastly, we consider MSFVW propagation losses for a

triple-layered YIG-film structure which have not been

Hc52500‘e
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Fig. 5. ( Continued) (b) Group delay. (c) Potential profile.

fully investigated [6], [8]. The frequency’ dependence of L,

the group delay T, and potential profiles are shown in Fig,

5(a), (b), and (c), respectively, where Ho= 2500 Oe, ‘A4,1=
1750 G, M,2 = 1500 G, M~3 = 1680 G, dl = 90 pm, dz = 10

pm, d~ = 7pm, h =127 pm, t-+co,and AHI, AH2, AH3,

are given by

AHI= AHZ= AH3 = 0.3 Oe for @ (21a)

AH3= 0.1 Oe A.HI= AH2= 0.3 Oe for @ (21b)

AH2 = 0.1 Oe AH~ = AH1=0.3 Oe for @ (21c)

AHI = 0.1 Oe AHZ = AH3 = 0.3 Oe for @,

(21d)

For comparison with the lossless case A HI = AHZ =

AHJ = O [8], the results above 2.8 GHz are presented in

Fig. 5. The delay curve and potential profiles are almost

the same for all the cases 1, 2, 3, and 4. Pdso, the delay

curve in Fig. 5(b) is like that in [8, fig. 3]. When three films

have the same line width (case 1), the frequency depen-
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Frequency dependence of loss factor for MSFVW modes in a

triple-layered YIG-film structure. (a) /3 = 200 cm-L. (b) ~ = 90 cm -1.

dence of L is similar to that for a single YIG-film struc-

ture. With increasing frequency, the potential is well con-

fined in the first film. Thus, the loss factor L for case 4

with smaller A HI decreases with frequency. In cases 2 and

3 with larger A HI, on the other hand, the loss factor L

increases with frequency. Since the magnitude of the po-

tential is relatively small in the third film, the influence of

the value of A H3 on L is very small and the difference

between the loss factors of cases 1 and 2 is small. It is

found from Fig. 5(a) and (b) that case 3 provides the

smallest propagation loss in nondispersive bandwidth. The

frequency dependence of the loss factor for ~ = 200 and 90

cm–l is shown in Fig. 6(a) and (b), respectively. In order

to preserve the constant value of ~, the bias field HO is

altered. When /3 is approximately constant, potential pro-

files are almost the same even though frequency varies. In

the case of ~ = 200 cm-1, the potential is well confined in

the first film. In the case of ~ =90 cm-1, on the other

hand, the potential peak moves toward the interface be-

tween the first and second films. It is found from Figs. 5

and 6 that propagation losses depend greatly on the line

width of the film in which the potential is well confined.

V. CONCLUSIONS

An efficient finite element solution procedure was devel-

oped for the analysis of MSW propagation losses for

multilayered inhomogeneous waveguides. The final matrix

equation is reduced to a standard complex eigenvalue

problem whose eigenvalue corresponds to the complex

phase constant itself. Thus, the phase and attenuation

constants can be directly obtained by solving a standard

eigenvalue equation.

The validity of the method is confirmed by calculating

MSSW propagation losses for a single YIG-film structure.

Also,, MSBVW propagation losses for a single YIG-film

structure are calculated. It is shown that the MSBVW

propagation loss characteristic is similar to that for

MSFVW modes. Furthermore, MSFVW propagation losses

for three-layered YIG-film structure are also investigated.

It is found that in the triple-layered structure, propagation

losses depend greatly on the line width of the film in which

the
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potential is well confined.
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